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Based on the Nagel-SchreckenbergsNaSchd model of traffic flow, we study the effects of the orders of the
evolutive rule on traffic flow. It has been found from simulation that the cellular automatonsCAd traffic model
is very sensitively dependent on the orders of the evolutive rule. Changing the evolutive steps of the NaSch
model will result in two modified models, called the SDNaSch model and the noise-first model, with different
fundamental diagrams and jamming states. We analyze the mechanism of these two different traffic models and
corresponding traffic behaviors in detail and compare the two modified model with the NaSch model. It is
concluded that the order arrangement of the stochastic delay and deterministic deceleration indeed has remark-
able effects on traffic flow.
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I. Introduction

Recently, traffic problems have attracted considerable at-
tention from scientists because of the observed nonequilib-
rium phase transitions and various nonlinear dynamical phe-
nomenaf1g. Various traffic models, including the cellular
automaton models, the car-following models, the hydrody-
namic models, and the gas kinetic models have been devel-
oped f2g, and numerical empirical observations have been
reported f3g. Recent measurements have shown that the
flow-density relation in the fundamental diagram is rather
complicatedf3g. Analysis of measured data in highway traf-
fic indicated that the flow is not a unique function of the
density in some situations. A different scenario for jam for-
mation was proposed in 1994 by Kerner and Konhäuser at
DaimlerChrysler f4g. For a better understanding of such
complex traffic phenomena and reproducing the empirical
data, a very simple cellular automaton model for single-lane
traffic was presented by Nagel and Schreckenberg in 1992
f5,6g, called the NaSch model. The model is able to repro-
duce the basic phenomena of real traffic, such as the sponta-
neous formation of jams, by using very simple rules. The
state of the system at the timet+1 could be obtained from
the state at the timet by applying the following rules to all
cars at the same time:

sid Acceleration,

vn → minsvn + 1,vmaxd.

sii d Deterministic deceleration to avoid accidents,

vn → minsvn,gapnd.

siii d Randomization,

vn → maxsvn − 1,0d with probability p.

sivd Update of positions,

xnst + 1d → xn + vn.

The NaSch model has been recognized as the pioneering
work for simulating real traffic flow with cellular automaton
sCAd models. Its dynamics is formulated as followsf7g:

xist + 1d = xistd + maxf0 minhvmax,xj+1 − xj − 1,xjstd

− xjst − 1d + 1j − j jstdg, s1d

where the Boolean random variablej jstd=1 with probability
p and 0 with probability 1−p. The vehicles are updated in
parallel according to the NaSch rules: motion, acceleration,
deceleration, and randomization. The most important empiri-
cally measured quantities in traffic flow are usually shown in
the fundamental diagram, which reflects the transit capacity
for a one-lane traffic-flow model. However, the transit capac-
ity given by the NaSch model was underestimated compared
with the actual one in real traffic. The maximum flowsi.e.,
the road capacityd obtained by numerical simulation with the
NaSch model is much lower than 2500 vehicles/sh* laned
given by measurements in highway trafficf8g. Moreover, the
metastable state with two branches in the fundamental dia-
gram has not been given by the NaSch model. To improve
the situation, a variety of modifications to the NaSch model
have been proposed by introducing the slow-to-start rules,
among which are the VDR modelf9g, theT2 modelf10g, and
the BJH modelf11g. They are able to reproduce metastable
states and exhibit a clear separation of the congestion and
free-flow regions in a space-time plot. The fundamental dia-
gram obtained by numerical simulation shows the road ca-
pacity approaches to the observed data more closely. Al-
though the NaSch model is a minimum model in the sense
that all four steps are necessary to reproduce the basic fea-
tures of real traffic, the only change in the order of the evo-
lutive steps will result in many different traffic models. Nev-
ertheless, from Eq.s1d, it is not clear how to reflect the steps
of evolution. In this paper, we attempt to study the effects of
the change in the evolutive steps on traffic flow. We analyze
the mechanisms of two different traffic models caused by*Email address: yuxuegxu@gxu.edu.cn
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changing the update steps in detail, which correspond to the
traffic behaviors, and compare them with those deduced from
the NaSch model. We find that the CA traffic model is very
sensitively dependent on the orders of evolutive rule. Modi-
fication of the evolutive steps will result in different funda-
mental diagrams and jamming states with different properties
as a counterpart to the different real traffic. Some modifica-
tion leads to quite satisfactory results in numerical simula-
tion in comparison with the empirical data, and the order of
randomization deceleration indeed has a great effect on the
description of the metastable states and separation phenom-
ena. Moreover, the primary jamming state in the NaSch
model might disappear by modifying of the evolutive steps,
and the basic characteristics of synchronization flow will oc-
cur instead.

II. Description of the Model and Discussion

A. SDNaSch model and analysis

In the NaSch model, stepsid reflects the general tendency
of the drivers to drive as fast as possible, if they are allowed
to do so, within the maximum speed limit. Stepsii d is in-
tended to avoid collision between the successive vehicles.
The randomization in stepsiii d actually includes the influ-
ences of the noise on the whole procedure of evolution. It
has combined three different behavioral patterns into one
computational rulef12g: fluctuations at maximum speed, re-
tarded acceleration, and overreactions at braking. This
mainly takes into account the different behavioral patterns of
the individual drivers especially, nondeterministic accelera-
tion as well as overreaction in the slowing-down process,
which is crucially important for the spontaneous formation
of traffic jams. Even changing the precise order of the steps
of the update rules in the NaSch model would change the
properties of the model. Some authors claimed that after ex-
changing the order of stepssii d and siii d, there will be no
overreactions at braking and thus no spontaneous formation
of jams f2,13g. However, we attempt to examine this prob-
lem by numerical simulation by exchanging the order of
stepssii d and siii d, and find that this rearrangement of the
update rules will possibly lead to the spontaneous formation
of jams. The update rules of our model are as follows:

sid Acceleration,

vn → minsvn + 1,vmaxd.

sii d Randomization,

vn → maxsvn − 1,0d with probability p.

The noise affects on the process of deterministic accelera-
tion. Thus, vehicles do not have to decelerate further.

siii d Deterministic deceleration to avoid accidents,

vn → minsvn,gapnd.

sivd Update of positions,

xnst + 1d → xn + vn.

In simulation with the above update rules, we represent a
lane using a one-dimensional lattice ofL cells with periodic

boundary conditions, Each cell is either empty or occupied
by just one vehicle with discrete velocityv. Velocity ranged
from 0 to vmax=5, wherevmax is the speed limit. We use the
same maximum velocity for all vehicles and consider one
type of vehicle moving only along one direction. We simu-
late a system of lengthL=53103, which corresponds to the
length of the actual road around 37.5 km. One time stepDt is
1 s, which is of the order of the reaction time for humans.
Then, the maximum velocityvmax=5 corresponds to
135 km/h in real traffic. Letvn and xn denote the current
velocity and position of thenth vehicle, respectively. We
denote gapnstd by gapnstd=xn+1−xn−1, which is the number
of empty cells in front of thenth vehicle. The computational
formulas are given as follows.

Average density,

r = N/L. s2d

Mean velocity,

V = o
i=1

n

vistd/N = o
t=t0

T+t0−1

vistd/T. s3d

Flow,

J = rV. s4d

The numerical simulation was performed according to the
above rules. For each simulation, we chose the probability
p=0.25. Each run is first conducted for 53104 time steps in
order to remove the transient effects and then the data are
recorded in successive 53104 time steps. The fundamental
diagram is obtained by averaging over 50 runs of simula-
tions.

At the initial instant,N vehicles are uniformly distributed
on the lane around the complete loop with an initial velocity
0. We obtain a fundamental diagram in our model with the
same simulation conditions as those of the NaSch model and
in the case of the various different delay probability, as
shown in Figs. 1sad and 1sbd. Figure 1sad indicates that our
model leads to a higher value of maximum flow than that
obtained with the NaSch model by 40%, which is close to
the observed datas2500 vehicles/h* laned f8g. In fact, when
a driver finds the dense vehicles in the front on the road, he
will first delay at random and estimate whether he should
make vehicles decelerate or not by observing and evaluating
his anticipation velocity and headway between successive
vehicles. If he finds his anticipation velocity will surpass
headway, he brakes agilely. Because the randomization is
first taken into account, braking times in the state of free
flow will be reduced and more vehicles with the maximum
velocity will cause the increase of capacity, while vehicles
cannot keep the maximum velocity at the dense density and
the fluctuation of velocity leads to the spontaneous formation
of jams and capacity drops. In contrast to the NaSch model,
it makes more vehicles keep higher or even maximum veloc-
ity. This model is thus called the sensitive drive model or the
SDNaSch model.

We can capture jamming of vehicles through the space-
time plot Fig. 2sad to describe the evolution of traffic flow
and further illustrate the effects of the spontaneous formation
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of traffic jams. Figure 2sad clearly shows the gray regions
which correspond to free flow while the vehicle density is
less than 0.2, and the dark regions which represent the static
vehicles that cluster to form the jam. Some vehicles cannot
keep their desired velocity and frequently decelerate at ran-
dom, and fluctuations of velocity will cause some vehicles to
stop, thereby forming a jam. The free flows are evidently
separated by jams. This phenomenon is called “separation of
phase,” which shows the possible existence of the metastable
state for a long lifetimef9g. The separation of phase makes
the flow slow down and the capacity drop. Figure 2sbd is a
plot of the velocity distribution corresponding to Fig. 2sad.
This figure clearly shows that the velocity of collective ve-
hicles approaches zero to form jams.

Daganzoet al. have studied the effects of the driver be-
haviors on traffic flow f14g, for instance with different
branches for accelerating or decelerating traffic or different
branches for distinct classes of drivers, e.g., rabbits and
slugs. They have also found that the flow-density relation of

the rabbits has a special reversed lambda shape, which was
explained by assuming a collective loss of motivation of
drivers to follow their predecessor closely, and the lane-
specific evolution of the data points with time, including the
“hysteresis” phenomenon and the lane-specific patterns in
time series of speedsand flowd in both queued and unqueued
traffic flow.

In order to take the hysteresis into account in our model,
we conducted the numerical simulation under two different
initial conditionsf2,9g. One is the homogeneous distribution
with the same headway, and the other is the megajam con-
sisting of one large compact cluster of standing vehicles.
Thus we obtain the fundamental diagram with two branches
as shown in Fig. 3, which is similar to the results obtained
with the VDR model. The results of the VDR model were
originated from introducing two delay probabilities depen-
dent on velocity instead of the constant randomization in the
NaSch model, while the same result in our model comes
from interchanging the order of the deterministic decelera-

FIG. 1. sad Fundamental diagram via numerical simulation with
the same conditionsvmax=5d, L=53103. Obviously, the flow of the
new model is higher than that of the NaSch model.sbd Fundamental
diagram via numerical simulation with the same conditionsvmax

=5, L=53103d under a different delay probability.

FIG. 2. sad The space-time plot describes the evolution of traffic
flow. The plot apparently shows the the spontaneous formation of
traffic jams. The dark regions represent where the static vehicles
collect to form the jam and the gray regions are free flow. The jam
is evidently separated by the free flow, i.e., called separation of
phase.sThe horizontal direction is space in 500 cells and the verti-
cal downward direction is increasing in time between 2.843104

and 2.883104 after removing the transient effects.d sbd is a plot of
the velocity distribution corresponding tosad. It clearly shows that
the velocity of collective vehicles approaches zero to form a jam
sr=0.2d.
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tion and the stochastic one in the steps of the evolution rules.
When density is near the ranger1,r,r2, the flow is dis-
continuous. The upper branch over the flowJjam corresponds
to the homogeneous traffic flow, which has larger flow with
no jam due to the reduction of braking times in the sensitive
driving. This case belongs to the metastable state and the
flow reaches the maximum asr<0.18. The lower branch
corresponds to the traffic jam; the flow reduces rapidly be-
cause of the increase of the braking probability. It is obvious
that there exists a hysteresis loop in the fundamental dia-
gram. From the simulated results, we can get the following
relations. In the regime of the upper branch as 0,r,r2,
every vehicle can move with the free-flow velocityv f =s1
−pdvmax+psvmax−1d=vmax−p, therefore the flow is given by

Jf = rsvmax− pd = rv f . s5d

In the regime of the lower branch asr2,r, the average
waiting timeTw of the first vehicles at the head of the mega-
jam is given by the minimum valueTw=1/s1−pd. The flow
is given by

Jsep= s1 − rds1 − pd. s6d

From the above analysis, we find that the vehicles in the state
of braking between 0,r,r2 decrease and the capacity of
the road approaches more closely the empirical data than that
predicted by the NaSch model due to the role of the stochas-
tic delay prior to deterministic deceleration while the in-
crease of the braking vehicles betweenr1,r,r2 due to the
role of the stochastic delay and deterministic deceleration at
the same time will frequently lead to the breakdown of flow
and traffic jam. Therefore, the exchange of the order of the
stochastic delay and deterministic deceleration has indeed a
remarkable effect on traffic flow.

B. Three-phase traffic model and analysis

More recently, Huang analytically studied the three-phase
traffic modelf15g using the cellular automaton approach. But

we find that we cannot reproduce the fundamental diagram
Fig. 1 in his paper using his update rules because his model
does not keep the conservation of number of vehicles. This
may be a clerical error. But it is well known that the update
rules in the theory of a cellular automaton is very important
to determine the evolution of vehicles. We consider that step
siii d in his model causes a collision between successive ve-
hicles. Thus, we only change the order of rule in the NaSch
model by letting stepsiii d go first and obtain the following
model, referred to as the noise-first model.

sid Noise,

vn → maxsvn − 1,0d with probability p.

This rule reflects the fact that some drivers first consider
decelerating with the probabilityp at random. In fact, the
noise affects the process of acceleration.

sii d Acceleration,

vn → minsvn + 1,vmaxd.

This rule describes the case in which all drivers want to drive
fast.

FIG. 3. Fundamental diagram via numerical simulation with two
different initial conditions: uniform distribution state and inhomo-
geneous congestionsvmax=5, L=53103, p=0.5d. The metastable
state appears betweenr1,r,r2.

FIG. 4. sad Fundamental diagram via numerical simulation with
the same conditions as those of the NaSch modelsvmax=5, L=5
3103d in the different situation of the delay probabilityp. sbd is a
plot of the velocity-density relation corresponding tosad.
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siii d Braking,

vn → minsvn,gapnd.

This rule represents the deterministic braking behaviors to
avoid accidents.

sivd Update of positions,

xnst + 1d → xn + vn.

This rule indicates each vehicle is moving forward according
to its new velocity determined in stepssid–siii d.

We obtain a fundamental diagram with our model under
the same simulation conditions as those of the NaSch model,
as shown in Fig. 4sad, and the corresponding velocity-density
curve is given in Fig. 4sbd. It can be found that there are
three different parts—0,r,r1, r1,r,r2, and
r2,r,1—which correspond to three different phases, i.e.,
free flow, low-speed flow, and jam. Interestingly, as the den-
sity r approaches 0.5, the velocity in low-speed flow be-
comes equal and all are equal to 1. The relation of the ve-
locity density is as follows:

v = 5vmax r , r1 = 1−p
vmax+1−2p

1
2r −

s1−2rds2p−1d
r

1−p
vmax+1−2p , r , r2 = 1

2

1
r − 1 r ù

1
2

6 .

FIG. 5. The space-time plot describes the evolution of traffic
flow in the cases of the different density.sad r=0.2, sbd r=0.5, scd
r=0.7.

FIG. 6. The plots of the velocity distribution correspond to Fig.
5 in the cases of the different density.sad r=0.2, sbd r=0.5, scd r
=0.7.
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The space-time plotssFig. 5d and the plots of the velocity
distribution sFig. 6d verify low-speed flow, uniform low-
speed flow, and jam for the cases of the different densities,
respectively. This model is different from the NaSch model
and has three different phases, i.e., free flow, low-speed flow,
and jam. Even if the density of traffic flow surpasses the
critical point, the jam can disappear. From the space-time
plots in Fig. 5, we find that there is a collective region with
directive motion at the same velocity of 1. From the funda-
mental diagram it can be seen that, as the density approaches
0.5, all vehicles form uniform flow with the identical veloc-
ity 1 and the situation has no relation to the delay probability
p. It shows the basic characteristics of synchronized flow
f16g. As the density becomes larger thanr=0.5, vehicles will
congest and stop-and-go traffic will occur.

III. Conclusions

In this paper, we study the effects of the orders of the
evolutive rule on traffic flow. It has been found that the CA
traffic model is sensitive to the orders of the evolutive rule
by simulation. By changing the evolutive steps, we obtain
two different traffic models. We analyze the mechanism of
two different traffic models and corresponding traffic behav-
iors in detail and compare them with the NaSch model. The
first model considers the effects of noise on the deterministic
acceleration. It is a model to describe sensitive behaviors of

the rabbit drivers through the rearrangement of stochastic
delay and deterministic deceleration. This model can adapt
even more to reflect the complicated traffic behaviors of real
traffic, such as the metastable state, separation of phases, and
hysteresis. The fundamental diagram obtained by numerical
simulation shows the capacity of the road to approach more
closely the empirical data compared with those of the NaSch
model, in which the noise plays an important role. In the
second model, the noise prior to deterministic acceleration is
taken into account. This model has three different phases,
i.e., free flow, low-speed flow, and jam. Moreover, even if
the density of traffic flow surpasses the critical point and
after the flow reaches the transit capacity, the jam can disap-
pear. As the density reaches 0.5, the flow becomes uniform
with identical velocity 1, which shows the characteristics of
synchronized flow. Furthermore, the results indicate that the
noise has indeed a remarkable effect on traffic flow.
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