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Effects of changing orders in the update rules on traffic flow
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Based on the Nagel-Schreckenb@&aSch model of traffic flow, we study the effects of the orders of the
evolutive rule on traffic flow. It has been found from simulation that the cellular autont@w@ntraffic model
is very sensitively dependent on the orders of the evolutive rule. Changing the evolutive steps of the NaSch
model will result in two modified models, called the SDNaSch model and the noise-first model, with different
fundamental diagrams and jamming states. We analyze the mechanism of these two different traffic models and
corresponding traffic behaviors in detail and compare the two modified model with the NaSch model. It is
concluded that the order arrangement of the stochastic delay and deterministic deceleration indeed has remark-
able effects on traffic flow.

DOI: 10.1103/PhysRevE.71.026123 PACS nuni#)er05.70.Ln

I. Introduction Xp(t+1) — Xp+vp.

Recently, traffic problems have attracted considerable at- The NaSch model has been recognized as the pioneering
tention from scientists because of the observed nonequilibwork for simulating real traffic flow with cellular automaton
rium phase transitions and various nonlinear dynamical phe:CA) models. Its dynamics is formulated as folloyd:
nomena[1]. Various traffic models, including the cellular
automaton models, the car-following models, the hydrody-  x(t+ 1) = x(t) + ma{0 minfvmaxXj<1 = X = 1,%(t)
namic models, and the gas kinetic models have been devel-
oped[2], and numerical empirical observations have been —x(t=D+ 1= §(0], (@)

][Iepor(;ed [?;]‘ Rle?_ent _metssufren;ents rt‘alvg_ shown_ thatthth‘\awhere the Boolean random varialdgt) =1 with probability
ow-censity relation in the fundamental diagram IS ra erp and 0 with probability 1. The vehicles are updated in

complicated 3. Analysis of measured data in highway traf- parallel according to the NaSch rules: motion, acceleration,

ggrlgslcsr:esdort::tsitgi\t{:)org 'Z Si?fte?erLljtnlsqcuei;lrjigcftcl)orna?rE ;2?_deceleration, and randomization. The most important empiri-
matiog/ was prooosed in 1'994 bv Kerner and Konrjwauser ally measured quantities in traffic flow are usually shown in

) prop y . dhe fundamental diagram, which reflects the transit capacity
DaimlerChrysler[4]. For a better understanding of such ’oraone-lane traffic-flow model. However, the transit capac-

gggpIg)\(,et:afgi?np|heeggm;raaspodmig??nﬁg? f;?esire‘”llg_'lr;aty given by the NaSch model was underestimated compared
traffié: wasy resgnted by Nagel and Schreckenber gin 199(?%“h the actual one in real traffic. The maximum fldke.,
P y Nag 9 e road capacifyobtained by numerical simulation with the

[5,6], called t_he NaSch model. The quel is able to FePronasch model is much lower than 2500 vehiclég/lane)
duce the basic phenomena of real traffic, such as the spontai-ven by measurements in highway traffél. Moreover, the
neous formation of jams, by using very simple rules. The? y . 9 y I : ' .
state of the system at the time 1 could be obtained from metastable state with two branches in the fundamental dia-

; . . gram has not been given by the NaSch model. To improve
g?ss::ttehztstgsqgrgﬁzy applying the following rules to all the situation, a variety of modifications to the NaSch model
(i) Acceleration ' have been proposed by introducing the slow-to-start rules,
' among which are the VDR modg9], the T?> model[10], and

U — MiNW, + 1,0ma) - the BJH mode([11]. They are able to reproduce metastable
states and exhibit a clear separation of the congestion and

(ii) Deterministic deceleration to avoid accidents, free-flow regions in a space-time plot. The fundamental dia-
) gram obtained by numerical simulation shows the road ca-

vn— Min(vy, gag). pacity approaches to the observed data more closely. Al-

(i) Randomization, though the NaSch model is a minimum model in the sense
that all four steps are necessary to reproduce the basic fea-

v, — max(v,— 1,0 with probability p. tures of real traffic, the only change in the order of the evo-

lutive steps will result in many different traffic models. Nev-
ertheless, from EqJ), it is not clear how to reflect the steps
of evolution. In this paper, we attempt to study the effects of
the change in the evolutive steps on traffic flow. We analyze
*Email address: yuxuegxu@gxu.edu.cn the mechanisms of two different traffic models caused by

(iv) Update of positions,
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changing the update steps in detail, which correspond to thioundary conditions, Each cell is either empty or occupied
traffic behaviors, and compare them with those deduced frorby just one vehicle with discrete velocity Velocity ranged
the NaSch model. We find that the CA traffic model is veryfrom 0 tov,a=5, Wherev . is the speed limit. We use the
sensitively dependent on the orders of evolutive rule. Modisame maximum velocity for all vehicles and consider one
fication of the evolutive steps will result in different funda- type of vehicle moving only along one direction. We simu-
mental diagrams and jamming states with different propertietate a system of length=5x 10%, which corresponds to the
as a counterpart to the different real traffic. Some modificalength of the actual road around 37.5 km. One time atejs
tion leads to quite satisfactory results in numerical simula-l s, which is of the order of the reaction time for humans.
tion in comparison with the empirical data, and the order ofThen, the maximum velocityv,,,,=5 corresponds to
randomization deceleration indeed has a great effect on thE35 km/h in real traffic. Let,, and %, denote the current
description of the metastable states and separation phenowelocity and position of thenth vehicle, respectively. We
ena. Moreover, the primary jamming state in the NaSchdenote gagt) by gap,(t)=x,+1—X,—1, which is the number
model might disappear by modifying of the evolutive steps,of empty cells in front of thenth vehicle. The computational
and the basic characteristics of synchronization flow will oc-formulas are given as follows.

cur instead. Average density,
p=NIL. 2
II. Description of the Model and Discussion )
Mean velocity,
A. SDNaSch model and analysis | Tr1
-
In the NaSch model, step) reflects the general tendency V=D ut)IN= > ui(t)/T. (3)
of the drivers to drive as fast as possible, if they are allowed i=1 t=t,

to do so, within the maximum speed limit. Stép) is in-

tended to avoid collision between the successive vehicles. F1OW:

The randomization in stefiii) actually includes the influ- J=pV. (4)
ences of the noise on the whole procedure of evolution. It

has combined three different behavioral patterns into one The numerical simulation was performed according to the
computational rulé12]: fluctuations at maximum speed, re- above rules. For each simulation, we chose the probability
tarded acceleration, and overreactions at braking. Thi®=0.25. Each run is first conducted forGL0* time steps in
mainly takes into account the different behavioral patterns ofrder to remove the transient effects and then the data are
the individual drivers especially, nondeterministic accelerafecorded in successive>510" time steps. The fundamental
tion as well as overreaction in the slowing-down processdiagram is obtained by averaging over 50 runs of simula-
which is crucially important for the spontaneous formationtions.

of traffic jams_ Even Changing the precise order of the steps At the initial instant,N vehicles are uniformly distributed

of the update rules in the NaSch model would change th@€n the lane around the complete loop with an initial velocity
properties of the model. Some authors claimed that after eX3- We obtain a fundamental diagram in our model with the
changing the order of stef#) and (iii), there will be no Same simulation conditions as those of the NaSch model and
overreactions at braking and thus no spontaneous formatidi the case of the various different delay probability, as
of jams[2,13]. However, we attempt to examine this prob- Shown in Figs. {a) and 1b). Figure 1a) indicates that our
lem by numerical simulation by exchanging the order ofm0d6| leads to a hlgher value of maximum flow than that
steps(ii) and (i), and find that this rearrangement of the Obtained with the NaSch model by 40%, which is close to
update rules will possibly lead to the spontaneous formatiofihe observed date2500 vehicles/h* lang[8]. In fact, when

of jams. The update rules of our model are as follows: a driver finds the dense vehicles in the front on the road, he
(i) Acceleration, will first delay at random and estimate whether he should

) make vehicles decelerate or not by observing and evaluating

Up— MIN(Vy + 1,050 - his anticipation velocity and headway between successive

vehicles. If he finds his anticipation velocity will surpass
headway, he brakes agilely. Because the randomization is
v, — max(v,— 1,0 with probability p. first taken into account, braking times in the state of free

The noise affects on the process of deterministic accelera{l-ow will be reduced and more vehicles with the maximum
. ) P velocity will cause the increase of capacity, while vehicles
tion. Thus, vehicles do not have to decelerate further.

(iii) Deterministic deceleration to avoid accidents cannot kee'p the maximum velocity at the dense density gnd
' the fluctuation of velocity leads to the spontaneous formation

(i) Randomization,

v, — min(v,,gap,). of jams and capacity drops. In contrast to the NaSch model,
) N it makes more vehicles keep higher or even maximum veloc-
(iv) Update of positions, ity. This model is thus called the sensitive drive model or the

SDNaSch model.
We can capture jamming of vehicles through the space-
In simulation with the above update rules, we represent @ime plot Fig. 2a) to describe the evolution of traffic flow
lane using a one-dimensional latticelotells with periodic  and further illustrate the effects of the spontaneous formation

Xp(t+1) — X, +vp.
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014 * *\*\*\* 0\&,\ FIG. 2. (a) The space-time plot describes the evolution of traffic
TR O flow. The plot apparently shows the the spontaneous formation of
0.0 T T — traffic jams. The dark regions represent where the static vehicles
04 06 08 10 collect to form the jam and the gray regions are free flow. The jam
density is evidently separated by the free flow, i.e., called separation of

phase(The horizontal direction is space in 500 cells and the verti-
FIG. 1. () Fundamental diagram via numerical simulation with cal downward direction is increasing in time between X84/
the same conditiofvna,=5), L=5% 10°. Obviously, the flow of the  and 2.88< 10" after removing the transient effedtéb) is a plot of
new model is higher than that of the NaSch mod®l Fundamental  the velocity distribution corresponding te). It clearly shows that
diagram via numerical simulation with the same conditiofax  the velocity of collective vehicles approaches zero to form a jam
=5, L=5%10% under a different delay probability. (p=0.2.

of traffic jams. Figure @) clearly shows the gray regions the rabbits has a special reversed lambda shape, which was
which correspond to free flow while the vehicle density isexplained by assuming a collective loss of motivation of
less than 0.2, and the dark regions which represent the statilrivers to follow their predecessor closely, and the lane-
vehicles that cluster to form the jam. Some vehicles cannospecific evolution of the data points with time, including the
keep their desired velocity and frequently decelerate at rarhysteresis” phenomenon and the lane-specific patterns in
dom, and fluctuations of velocity will cause some vehicles tatime series of spee@nd flow in both queued and unqueued
stop, thereby forming a jam. The free flows are evidentlytraffic flow.
separated by jams. This phenomenon is called “separation of In order to take the hysteresis into account in our model,
phase,” which shows the possible existence of the metastabiee conducted the numerical simulation under two different
state for a long lifetimg9]. The separation of phase makes initial conditions[2,9]. One is the homogeneous distribution
the flow slow down and the capacity drop. Figui@)2is a  with the same headway, and the other is the megajam con-
plot of the velocity distribution corresponding to Figla2  sisting of one large compact cluster of standing vehicles.
This figure clearly shows that the velocity of collective ve- Thus we obtain the fundamental diagram with two branches
hicles approaches zero to form jams. as shown in Fig. 3, which is similar to the results obtained
Daganzoet al. have studied the effects of the driver be- with the VDR model. The results of the VDR model were
haviors on traffic flow[14], for instance with different originated from introducing two delay probabilities depen-
branches for accelerating or decelerating traffic or differentlent on velocity instead of the constant randomization in the
branches for distinct classes of drivers, e.g., rabbits antilaSch model, while the same result in our model comes
slugs. They have also found that the flow-density relation ofrom interchanging the order of the deterministic decelera-
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geneous congestiof =5, L=5X10°, p=0.5. The metastable —*—p=0:5
state appears between< p< p,. 4 —O—p=0.7

tion and the stochastic one in the steps of the evolution rules
When density is near the rangg<p<p,, the flow is dis-
continuous. The upper branch over the flgyy, corresponds

to the homogeneous traffic flow, which has larger flow with
no jam due to the reduction of braking times in the sensitive ,
driving. This case belongs to the metastable state and thr ... .=
flow reaches the maximum gs=0.18. The lower branch
corresponds to the traffic jam; the flow reduces rapidly be-

3

velocity

24

cause of the increase of the braking probability. It is obvious °00 Y : o os A
that there exists a hysteresis loop in the fundamental dia- ’ | ’ densi ’ ’ ’
gram. From the simulated results, we can get the following sity

relations. In the regime of the upper branch as @< p,, FIG. 4. (a) Fundamental diagram via numerical simulation with

every vehicle can move with the free-flow ve.loc'ﬂ.}y:(l the same conditions as those of the NaSch mddgl,=5, L=5
~P)Umaxt P(Vmax— 1) =vmax~P, therefore the flow is given by . 13) in the different situation of the delay probabilify (b) is a
Ji = p(vmax— P) = pus. (5) plot of the velocity-density relation corresponding(&).
In the regime of the lower branch gs<p, the average we find that we cannot reproduce the fundamental diagram
waiting timeT,, of the first vehicles at the head of the mega-Fig. 1 in his paper using his update rules because his model
jam is given by the minimum valug,=1/(1-p). The flow  does not keep the conservation of number of vehicles. This
is given by may be a clerical error. But it is well known that the update
Jeo=(1-p)(1=p) ) rules in the theory of a cellular automaton is very important
sep P P)- to determine the evolution of vehicles. We consider that step
From the above analysis, we find that the vehicles in the statgii) in his model causes a collision between successive ve-
of braking between € p< p, decrease and the capacity of hicles. Thus, we only change the order of rule in the NaSch
the road approaches more closely the empirical data than thatodel by letting stegiii) go first and obtain the following
predicted by the NaSch model due to the role of the stochagnodel, referred to as the noise-first model.
tic delay prior to deterministic deceleration while the in- (i) Noise,
crease of the braking vehicles betwggr< p < p, due to the v, — max(v, - 1,0) with probability p.

role of the stochastic delay and deterministic deceleration at
the same time will frequently lead to the breakdown of flow This rule reflects the fact that some drivers first consider

and traffic jam. Therefore, the exchange of the order of thelecelerating with the probabilitp at random. In fact, the
stochastic delay and deterministic deceleration has indeedrwise affects the process of acceleration.
remarkable effect on traffic flow. (ii) Acceleration,

B. Three-phase traffic model and analysis vy — Min(Vy+ 10ma0 -

More recently, Huang analytically studied the three-phasdhis rule describes the case in which all drivers want to drive
traffic model[15] using the cellular automaton approach. Butfast.
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FIG. 6. The plots of the velocity distribution correspond to Fig.
5 in the cases of the different densitg) p=0.2, (b) p=0.5,(c) p
=0.7.

FIG. 5. The space-time plot describes the evolution of traffic ~We obtain a fundamental diagram with our model under
flow in the cases of the different densitg) p=0.2, (b) p=0.5,(c)  the same simulation conditions as those of the NaSch model,
p=0.7. as shown in Fig. @), and the corresponding velocity-density

curve is given in Fig. &). It can be found that there are

three different parts—@p<p;, p1<p<p, and

p><p<l—which correspond to three different phases, i.e.,
vy, — min(v,, gap,) . free flow, low-speed flow, and jam. Interestingly, as the den-
) o ] ) sity p approaches 0.5, the velocity in low-speed flow be-
This rule represents the deterministic braklng behaviors t@omes equa| and all are equa| to 1. The relation of the ve-
avoid accidents. locity density is as follows:

(iv) Update of positions,

(iii) Braking,

__1-
Umax P<p1= 0
Xo(t+ 1) = Xn +on. _d 1 a-2eey o 1
. . L . . V=12~ s vmadtl-2p S P =P273
This rule indicates each vehicle is moving forward according 1 1
to its new velocity determined in stejig—iii ). -1 P=3
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The space-time plotd=ig. 5 and the plots of the velocity the rabbit drivers through the rearrangement of stochastic
distribution (Fig. 6) verify low-speed flow, uniform low- delay and deterministic deceleration. This model can adapt
speed flow, and jam for the cases of the different densitiesgven more to reflect the complicated traffic behaviors of real
respectively. This model is different from the NaSch modeltraffic, such as the metastable state, separation of phases, and
and has three different phases, i.e., free flow, low-speed flovhysteresis. The fundamental diagram obtained by numerical
and jam. Even if the density of traffic flow surpasses thesimulation shows the capacity of the road to approach more
critical point, the jam can disappear. From the space-timelosely the empirical data compared with those of the NaSch
plots in Fig. 5, we find that there is a collective region with model, in which the noise plays an important role. In the
directive motion at the same velocity of 1. From the funda-second model, the noise prior to deterministic acceleration is
mental diagram it can be seen that, as the density approachtdken into account. This model has three different phases,
0.5, all vehicles form uniform flow with the identical veloc- i.e., free flow, low-speed flow, and jam. Moreover, even if
ity 1 and the situation has no relation to the delay probabilitythe density of traffic flow surpasses the critical point and
p. It shows the basic characteristics of synchronized flowafter the flow reaches the transit capacity, the jam can disap-
[16]. As the density becomes larger than0.5, vehicles will  pear. As the density reaches 0.5, the flow becomes uniform

congest and stop-and-go traffic will occur. with identical velocity 1, which shows the characteristics of
synchronized flow. Furthermore, the results indicate that the
IIl. Conclusions noise has indeed a remarkable effect on traffic flow.
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